Whole-Genome DNA Methylation Profile of the Jewel Wasp (Nasonia vitripennis)
نویسندگان
چکیده
The epigenetic mark of DNA methylation, the addition of a methyl (CH3) group to a cytosine residue, has been extensively studied in many mammalian genomes and, although it is commonly found at the promoter regions of genes, it is also involved in a number of different biological functions. In other complex animals, such as social insects, DNA methylation has been determined to be involved in caste differentiation and to occur primarily in gene bodies. The role of methylation in nonsocial insects, however, has not yet been explored thoroughly. Here, we present the whole-genome DNA methylation profile of the nonsocial hymenopteran, the jewel wasp (Nasonia vitripennis). From high-throughput sequencing of bisulfite-converted gDNA extracted from male Nasonia thoraces, we were able to determine which cytosine residues are methylated in the entire genome. We found that an overwhelming majority of methylated sites (99.7%) occur at cytosines followed by a guanine in the 3' direction (CpG sites). Additionally, we found that a majority of methylation in Nasonia occurs within exonic regions of the genome (more than 62%). Overall, methylation is sparse in Nasonia, occurring only at 0.18% of all sites and at 0.63% of CpGs. Our analysis of the Nasonia methylome revealed that in contrast to the methylation profile typically seen in mammals, methylation is sparse and is constrained primarily to exons. This methylation profile is more similar to that of the social hymenopteran species, the honey bee (Apis mellifera). In presenting the Nasonia methylome, we hope to promote future investigation of the regulatory function of DNA methylation in both social and nonsocial hymenoptera.
منابع مشابه
A ‘selfish’ B chromosome induces genome elimination by disrupting the histone code in the jewel wasp Nasonia vitripennis
Intragenomic conflict describes a phenomenon in which genetic elements act 'selfishly' to gain a transmission advantage at the expense of the whole genome. A non-essential, selfish B chromosome known as Paternal Sex Ratio (PSR) induces complete elimination of the sperm-derived hereditary material in the jewel wasp Nasonia vitripennis. PSR prevents the paternal chromatin from forming chromosomes...
متن کاملIdentification of Genes Uniquely Expressed in the Germ-Line Tissues of the Jewel Wasp Nasonia vitripennis
The jewel wasp Nasonia vitripennis is a rising model organism for the study of haplo-diploid reproduction characteristic of hymenopteran insects, which include all wasps, bees, and ants. We performed transcriptional profiling of the ovary, the female soma, and the male soma of N. vitripennis to complement a previously existing transcriptome of the wasp testis. These data were deposited into an ...
متن کاملDNA methylation changes induced by long and short photoperiods in Nasonia.
Many organisms monitor the annual change in day length and use this information for the timing of their seasonal response. However, the molecular mechanisms underlying photoperiodic timing are largely unknown. The wasp Nasonia vitripennis is an emerging model organism that exhibits a strong photoperiodic response: Short autumnal days experienced by females lead to the induction of developmental...
متن کاملGenome Silencing and Elimination: Insights from a “Selfish” B Chromosome
B chromosomes are non-essential components of numerous plant and animal genomes. Because many of these "extra" chromosomes enhance their own transmission in ways that are detrimental to the rest of the genome, they can be thought of as genome parasites. An extreme example is a paternally inherited B chromosome known as paternal sex ratio (PSR), which is found in natural populations of the jewel...
متن کاملFunction and Evolution of DNA Methylation in Nasonia vitripennis
The parasitoid wasp Nasonia vitripennis is an emerging genetic model for functional analysis of DNA methylation. Here, we characterize genome-wide methylation at a base-pair resolution, and compare these results to gene expression across five developmental stages and to methylation patterns reported in other insects. An accurate assessment of DNA methylation across the genome is accomplished us...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2014